# Brainingcamp

Visit Website

- algebra
- geometry
- statistics

- deduction
- problem solving

- test prep

###### Pros

A nice option for individualized, self-paced test prep that requires very little teacher work and generates helpful student data.###### Cons

Gives little meaningful feedback and doesn’t promote deep learning, as discovery features are voluntary and separate from direct instruction lessons.###### Bottom Line

A good option for students who need a little more practice at their own pace or for those heavy note-takers who crave a good worksheet in an inquiry-heavy classroom.The dashboard allows class creation (one-by-one student entry, or students can create their own accounts) and assignment of lessons and assessments to classes with due dates and offers class- and student-level reports on simple metrics.

Experience is similar to a standards-heavy, direct-instruction math classroom. It’s nicely presented and self-paced with some discovery-oriented tools, but there's not much to encourage deep engagement beyond the content.

The direct instruction style used isn’t necessarily bad; in fact, some guided practice and digital manipulatives make it about as good as a lecture can get. Independent practice will be familiar to standardized test-takers.

Students and teachers get data on progress, but little help available outside of lessons. Feedback of the right/wrong variety. Could work fine for test prep with teacher support, but students may struggle using as a standalone product.

This would work well for at-home test prep or additional individual student practice for teachers who would rather devote class time to rich conceptual understanding. The testing-style questions and procedural lessons help build student familiarity with common state assessments, and the self-paced, semi-interactive, narrative lectures will serve the needs of those heavy-note-taking mastery learners who crave worksheets.

Most students will likely need some live guidance to see the value of the separate open-ended digital manipulatives and to decide when to move on to practice and assessment. As such, it would be tough to see Brainingcamp working well as a standalone curriculum or tool for a flipped classroom, so those uses are not recommended.

Read More Read LessBrainingcamp may be the answer to two common questions many math teachers grapple with: “How can I individualize test prep for each student?” and “How can I support mastery learners when my classroom is inquiry-based and guided by constructivist principles?” Featuring Flash-based interactive slide decks with a Smartboard-like interface, students click through lessons on many middle school math topics, then complete standardized-test-style practice questions and assessments.

On the administration side of things, a spartan dashboard allows teachers to create classes, assign learning activities and assessments to classes (but not individuals), and generate very simple reports. Students must be entered one by one or may set up their own accounts; a full-class import feature is sadly nowhere to be found.

Read More Read LessAt its core, Brainingcamp is a prerecorded direct-instruction curriculum that does a good job of teaching procedural math skills in a standardized-test-friendly way. It offers some features that give it a discovery-learning flavor, such as free-play digital manipulatives, but multiple-choice questions and easily reducible word problems promote just as much learning as needed for benchmark assessments.

Brainingcamp has a crisp, functional, but bare-bones design; a nicely animated lecture approach with limited interactivity; and sparse student feedback. This site works best as a supplement to inquiry-based curricula. It’s great direct instruction, but giving users more feedback beyond right/wrong and making separate exploration and discovery tools a more integrated part of the learning experience would push Brainingcamp into elite edtech territory.

Read More Read Less## Key Standards Supported

## Expressions And Equations | |

6.EE: Apply And Extend Previous Understandings Of Arithmetic To Algebraic Expressions. | |

6.EE.1 | Write and evaluate numerical expressions involving whole-number exponents. |

6.EE.2.a | Write expressions that record operations with numbers and with letters standing for numbers. For example, express the calculation “Subtract y from 5” as 5 – y. |

6.EE.2.b | Identify parts of an expression using mathematical terms (sum, term, product, factor, quotient, coefficient); view one or more parts of an expression as a single entity. For example, describe the expression 2 (8 + 7) as a product of two factors; view (8 + 7) as both a single entity and a sum of two terms. |

6.EE.2.c | Evaluate expressions at specific values of their variables. Include expressions that arise from formulas used in real-world problems. Perform arithmetic operations, including those involving whole- number exponents, in the conventional order when there are no parentheses to specify a particular order (Order of Operations). For example, use the formulas V = s3 and A = 6 s2 to find the volume and surface area of a cube with sides of length s = 1/2. |

6.EE.3 | Apply the properties of operations to generate equivalent expressions. |

6.EE.4 | Identify when two expressions are equivalent (i.e., when the two expressions name the same number regardless of which value is substituted into them). For example, the expressions y + y + y and 3y are equivalent because they name the same number regardless of which number y stands for. |

Reason About And Solve One-Variable Equations And Inequalities. | |

6.EE.5 | Understand solving an equation or inequality as a process of answering a question: which values from a specified set, if any, make the equation or inequality true? Use substitution to determine whether a given number in a specified set makes an equation or inequality true. |

6.EE.6 | Use variables to represent numbers and write expressions when solving a real-world or mathematical problem; understand that a variable can represent an unknown number, or, depending on the purpose at hand, any number in a specified set. |

6.EE.7 | Solve real-world and mathematical problems by writing and solving equations of the form x + p = q and px = q for cases in which p, q and x are all nonnegative rational numbers. |

6.EE.8 | Write an inequality of the form x > c or x < c to represent a constraint or condition in a real-world or mathematical problem. Recognize that inequalities of the form x > c or x < c have infinitely many solutions; represent solutions of such inequalities on number line diagrams. |

Represent And Analyze Quantitative Relationships Between Dependent And Independent Variables. | |

6.EE.9 | Use variables to represent two quantities in a real-world problem that change in relationship to one another; write an equation to express one quantity, thought of as the dependent variable, in terms of the other quantity, thought of as the independent variable. Analyze the relationship between the dependent and independent variables using graphs and tables, and relate these to the equation. For example, in a problem involving motion at constant speed, list and graph ordered pairs of distances and times, and write the equation d = 65t to represent the relationship between distance and time. |

7.EE: Use Properties Of Operations To Generate Equivalent Expressions. | |

7.EE.1 | Apply properties of operations as strategies to add, subtract, factor, and expand linear expressions with rational coefficients. |

Solve Real-Life And Mathematical Problems Using Numerical And Algebraic Expressions And Equations. | |

7.EE.3 | Solve multi-step real-life and mathematical problems posed with positive and negative rational numbers in any form (whole numbers, fractions, and decimals), using tools strategically. Apply properties of operations to calculate with numbers in any form; convert between forms as appropriate; and assess the reasonableness of answers using mental computation and estimation strategies. For example: If a woman making $25 an hour gets a 10% raise, she will make an additional 1/10 of her salary an hour, or $2.50, for a new salary of $27.50. If you want to place a towel bar 9 3/4 inches long in the center of a door that is 27 1/2 inches wide, you will need to place the bar about 9 inches from each edge; this estimate can be used as a check on the exact computation. |

7.EE.4.a | Solve word problems leading to equations of the form px + q = r and p(x + q) = r, where p, q, and r are specific rational numbers. Solve equations of these forms fluently. Compare an algebraic solution to an arithmetic solution, identifying the sequence of the operations used in each approach. For example, the perimeter of a rectangle is 54 cm. Its length is 6 cm. What is its width? |

7.EE.4.b | Solve word problems leading to inequalities of the form px + q > r or px + q < r, where p, q, and r are specific rational numbers. Graph the solution set of the inequality and interpret it in the context of the problem. For example: As a salesperson, you are paid $50 per week plus $3 per sale. This week you want your pay to be at least $100. Write an inequality for the number of sales you need to make, and describe the solutions. |

8.EE: Work With Radicals And Integer Exponents. | |

8.EE.1 | Know and apply the properties of integer exponents to generate equivalent numerical expressions. For example, 32 × 3–5 = 3–3 = 1/33 = 1/27. |

8.EE.3 | Use numbers expressed in the form of a single digit times an integer power of 10 to estimate very large or very small quantities, and to express how many times as much one is than the other. For example, estimate the population of the United States as 3 × 108 and the population of the world as 7 × 109, and determine that the world population is more than 20 times larger. |

8.EE.4 | Perform operations with numbers expressed in scientific notation, including problems where both decimal and scientific notation are used. Use scientific notation and choose units of appropriate size for measurements of very large or very small quantities (e.g., use millimeters per year for seafloor spreading). Interpret scientific notation that has been generated by technology. |

Understand The Connections Between Proportional Relationships, Lines, And Linear Equations. | |

8.EE.5 | Graph proportional relationships, interpreting the unit rate as the slope of the graph. Compare two different proportional relationships represented in different ways. For example, compare a distance-time graph to a distance-time equation to determine which of two moving objects has greater speed. |

8.EE.6 | Use similar triangles to explain why the slope m is the same between any two distinct points on a non-vertical line in the coordinate plane; derive the equation y = mx for a line through the origin and the equation y = mx + b for a line intercepting the vertical axis at b. |

Analyze And Solve Linear Equations And Pairs Of Simultaneous Linear Equations. | |

8.EE.7.a | Give examples of linear equations in one variable with one solution, infinitely many solutions, or no solutions. Show which of these possibilities is the case by successively transforming the given equation into simpler forms, until an equivalent equation of the form x = a, a = a, or a = b results (where a and b are different numbers). |

8.EE.7.b | Solve linear equations with rational number coefficients, including equations whose solutions require expanding expressions using the distributive property and collecting like terms. |

## Functions | |

8.F: Define, Evaluate, And Compare Functions. | |

8.F.3 | Interpret the equation y = mx + b as defining a linear function, whose graph is a straight line; give examples of functions that are not linear. For example, the function A = s2 giving the area of a square as a function of its side length is not linear because its graph contains the points (1,1), (2,4) and (3,9), which are not on a straight line. |

Use Functions To Model Relationships Between Quantities. | |

8.F.4 | Construct a function to model a linear relationship between two quantities. Determine the rate of change and initial value of the function from a description of a relationship or from two (x, y) values, including reading these from a table or from a graph. Interpret the rate of change and initial value of a linear function in terms of the situation it models, and in terms of its graph or a table of values. |

8.F.5 | Describe qualitatively the functional relationship between two quantities by analyzing a graph (e.g., where the function is increasing or decreasing, linear or nonlinear). Sketch a graph that exhibits the qualitative features of a function that has been described verbally. |

## Geometry | |

6.G: Solve Real-World And Mathematical Problems Involving Area, Surface Area, And Volume. | |

6.G.1 | Find the area of right triangles, other triangles, special quadrilaterals, and polygons by composing into rectangles or decomposing into triangles and other shapes; apply these techniques in the context of solving real-world and mathematical problems. |

6.G.2 | Find the volume of a right rectangular prism with fractional edge lengths by packing it with unit cubes of the appropriate unit fraction edge lengths, and show that the volume is the same as would be found by multiplying the edge lengths of the prism. Apply the formulas V = l w h and V = b h to find volumes of right rectangular prisms with fractional edge lengths in the context of solving real-world and mathematical problems. |

6.G.4 | Represent three-dimensional figures using nets made up of rectangles and triangles, and use the nets to find the surface area of these figures. Apply these techniques in the context of solving real-world and mathematical problems. |

7.G: Draw, Construct, And Describe Geometrical Figures And Describe The Relationships Between Them. | |

7.G.2 | Draw (freehand, with ruler and protractor, and with technology) geometric shapes with given conditions. Focus on constructing triangles from three measures of angles or sides, noticing when the conditions determine a unique triangle, more than one triangle, or no triangle. |

Solve Real-Life And Mathematical Problems Involving Angle Measure, Area, Surface Area, And Volume. | |

7.G.4 | Know the formulas for the area and circumference of a circle and use them to solve problems; give an informal derivation of the relationship between the circumference and area of a circle. |

7.G.6 | Solve real-world and mathematical problems involving area, volume and surface area of two- and three-dimensional objects composed of triangles, quadrilaterals, polygons, cubes, and right prisms. |

8.G: Understand Congruence And Similarity Using Physical Models, Trans- Parencies, Or Geometry Software. | |

8.G.1.a | Lines are taken to lines, and line segments to line segments of the same length. |

8.G.1.b | Angles are taken to angles of the same measure. |

8.G.2 | Understand that a two-dimensional figure is congruent to another if the second can be obtained from the first by a sequence of rotations, reflections, and translations; given two congruent figures, describe a sequence that exhibits the congruence between them. |

8.G.4 | Understand that a two-dimensional figure is similar to another if the second can be obtained from the first by a sequence of rotations, reflections, translations, and dilations; given two similar two- dimensional figures, describe a sequence that exhibits the similarity between them. |

8.G.5 | Use informal arguments to establish facts about the angle sum and exterior angle of triangles, about the angles created when parallel lines are cut by a transversal, and the angle-angle criterion for similarity of triangles. For example, arrange three copies of the same triangle so that the sum of the three angles appears to form a line, and give an argument in terms of transversals why this is so. |

Understand And Apply The Pythagorean Theorem. | |

8.G.6 | Explain a proof of the Pythagorean Theorem and its converse. |

8.G.7 | Apply the Pythagorean Theorem to determine unknown side lengths in right triangles in real-world and mathematical problems in two and three dimensions. |

8.G.8 | Apply the Pythagorean Theorem to find the distance between two points in a coordinate system. |

Solve Real-World And Mathematical Problems Involving Volume Of Cylinders, Cones, And Spheres. | |

8.G.9 | Know the formulas for the volumes of cones, cylinders, and spheres and use them to solve real-world and mathematical problems. |

## Ratios And Proportional Relationships | |

6.RP: Understand Ratio Concepts And Use Ratio Reasoning To Solve Problems. | |

6.RP.1 | Understand the concept of a ratio and use ratio language to describe a ratio relationship between two quantities. For example, “The ratio of wings to beaks in the bird house at the zoo was 2:1, because for every 2 wings there was 1 beak.” “For every vote candidate A received, candidate C received nearly three votes.” |

6.RP.2 | Understand the concept of a unit rate a/b associated with a ratio a:b with b ≠ 0, and use rate language in the context of a ratio relationship. For example, “This recipe has a ratio of 3 cups of flour to 4 cups of sugar, so there is 3/4 cup of flour for each cup of sugar.” “We paid $75 for 15 hamburgers, which is a rate of $5 per hamburger.”1 |

6.RP.3 | Use ratio and rate reasoning to solve real-world and mathematical problems, e.g., by reasoning about tables of equivalent ratios, tape diagrams, double number line diagrams, or equations. |

6.RP.3.a | Make tables of equivalent ratios relating quantities with whole- number measurements, find missing values in the tables, and plot the pairs of values on the coordinate plane. Use tables to compare ratios. |

6.RP.3.b | Solve unit rate problems including those involving unit pricing and constant speed. For example, if it took 7 hours to mow 4 lawns, then at that rate, how many lawns could be mowed in 35 hours? At what rate were lawns being mowed? |

6.RP.3.d | Use ratio reasoning to convert measurement units; manipulate and transform units appropriately when multiplying or dividing quantities. |

7.RP: Analyze Proportional Relationships And Use Them To Solve Real-World And Mathematical Problems. | |

7.RP.1 | Compute unit rates associated with ratios of fractions, including ratios of lengths, areas and other quantities measured in like or different units. For example, if a person walks 1/2 mile in each 1/4 hour, compute the unit rate as the complex fraction 1/2/1/4 miles per hour, equivalently 2 miles per hour. |

7.RP.2.a | Decide whether two quantities are in a proportional relationship, e.g., by testing for equivalent ratios in a table or graphing on a coordinate plane and observing whether the graph is a straight line through the origin. |

7.RP.2.b | Identify the constant of proportionality (unit rate) in tables, graphs, equations, diagrams, and verbal descriptions of proportional relationships. |

7.RP.2.d | Explain what a point (x, y) on the graph of a proportional relationship means in terms of the situation, with special attention to the points (0, 0) and (1, r) where r is the unit rate. |

7.RP.3 | Use proportional relationships to solve multistep ratio and percent problems. Examples: simple interest, tax, markups and markdowns, gratuities and commissions, fees, percent increase and decrease, percent error. |

## Statistics And Probability | |

6.SP: Develop Understanding Of Statistical Variability. | |

6.SP.1 | Recognize a statistical question as one that anticipates variability in the data related to the question and accounts for it in the answers. For example, “How old am I?” is not a statistical question, but “How old are the students in my school?” is a statistical question because one anticipates variability in students’ ages. |

6.SP.2 | Understand that a set of data collected to answer a statistical question has a distribution which can be described by its center, spread, and overall shape. |

6.SP.3 | Recognize that a measure of center for a numerical data set summarizes all of its values with a single number, while a measure of variation describes how its values vary with a single number. |

Summarize And Describe Distributions. | |

6.SP.4 | Display numerical data in plots on a number line, including dot plots, histograms, and box plots. |

6.SP.5 | Summarize numerical data sets in relation to their context, such as by: |

6.SP.5.a | Reporting the number of observations. |

6.SP.5.b | Describing the nature of the attribute under investigation, including how it was measured and its units of measurement. |

6.SP.5.c | Giving quantitative measures of center (median and/or mean) and variability (interquartile range and/or mean absolute deviation), as well as describing any overall pattern and any striking deviations from the overall pattern with reference to the context in which the data were gathered. |

6.SP.5.d | Relating the choice of measures of center and variability to the shape of the data distribution and the context in which the data were gathered. |

7.SP: Draw Informal Comparative Inferences About Two Populations. | |

7.SP.3 | Informally assess the degree of visual overlap of two numerical data distributions with similar variabilities, measuring the difference between the centers by expressing it as a multiple of a measure of variability. For example, the mean height of players on the basketball team is 10 cm greater than the mean height of players on the soccer team, about twice the variability (mean absolute deviation) on either team; on a dot plot, the separation between the two distributions of heights is noticeable. |

7.SP.4 | Use measures of center and measures of variability for numerical data from random samples to draw informal comparative inferences about two populations. For example, decide whether the words in a chapter of a seventh-grade science book are generally longer than the words in a chapter of a fourth-grade science book. |

Investigate Chance Processes And Develop, Use, And Evaluate Probability Models. | |

7.SP.5 | Understand that the probability of a chance event is a number between 0 and 1 that expresses the likelihood of the event occurring. Larger numbers indicate greater likelihood. A probability near 0 indicates an unlikely event, a probability around 1/2 indicates an event that is neither unlikely nor likely, and a probability near 1 indicates a likely event. |

7.SP.6 | Approximate the probability of a chance event by collecting data on the chance process that produces it and observing its long-run relative frequency, and predict the approximate relative frequency given the probability. For example, when rolling a number cube 600 times, predict that a 3 or 6 would be rolled roughly 200 times, but probably not exactly 200 times. |

7.SP.7 | Develop a probability model and use it to find probabilities of events. Compare probabilities from a model to observed frequencies; if the agreement is not good, explain possible sources of the discrepancy. |

7.SP.7.a | Develop a uniform probability model by assigning equal probability to all outcomes, and use the model to determine probabilities of events. For example, if a student is selected at random from a class, find the probability that Jane will be selected and the probability that a girl will be selected. |

7.SP.7.b | Develop a probability model (which may not be uniform) by observing frequencies in data generated from a chance process. For example, find the approximate probability that a spinning penny will land heads up or that a tossed paper cup will land open-end down. Do the outcomes for the spinning penny appear to be equally likely based on the observed frequencies? |

8.SP: Investigate Patterns Of Association In Bivariate Data. | |

8.SP.1 | Construct and interpret scatter plots for bivariate measurement data to investigate patterns of association between two quantities. Describe patterns such as clustering, outliers, positive or negative association, linear association, and nonlinear association. |

8.SP.2 | Know that straight lines are widely used to model relationships between two quantitative variables. For scatter plots that suggest a linear association, informally fit a straight line, and informally assess the model fit by judging the closeness of the data points to the line. |

## The Number System | |

6.NS: Compute Fluently With Multi-Digit Numbers And Find Common Factors And Multiples. | |

6.NS.3 | Fluently add, subtract, multiply, and divide multi-digit decimals using the standard algorithm for each operation. |

6.NS.4 | Find the greatest common factor of two whole numbers less than or equal to 100 and the least common multiple of two whole numbers less than or equal to 12. Use the distributive property to express a sum of two whole numbers 1–100 with a common factor as a multiple of a sum of two whole numbers with no common factor. For example, express 36 + 8 as 4 (9 + 2). |

Apply And Extend Previous Understandings Of Numbers To The System Of Rational Numbers. | |

6.NS.6.a | Recognize opposite signs of numbers as indicating locations on opposite sides of 0 on the number line; recognize that the opposite of the opposite of a number is the number itself, e.g., –(–3) = 3, and that 0 is its own opposite. |

6.NS.6.c | Find and position integers and other rational numbers on a horizontal or vertical number line diagram; find and position pairs of integers and other rational numbers on a coordinate plane. |

6.NS.7 | Understand ordering and absolute value of rational numbers. |

6.NS.7.a | Interpret statements of inequality as statements about the relative position of two numbers on a number line diagram. For example, interpret –3 > –7 as a statement that –3 is located to the right of –7 on a number line oriented from left to right. |

6.NS.7.c | Understand the absolute value of a rational number as its distance from 0 on the number line; interpret absolute value as magnitude for a positive or negative quantity in a real-world situation. For example, for an account balance of –30 dollars, write |–30| = 30 to describe the size of the debt in dollars. |

7.NS: Apply And Extend Previous Understandings Of Operations With Fractions To Add, Subtract, Multiply, And Divide Rational Numbers. | |

7.NS.1 | Apply and extend previous understandings of addition and subtraction to add and subtract rational numbers; represent addition and subtraction on a horizontal or vertical number line diagram. |

7.NS.1.b | Understand p + q as the number located a distance |q| from p, in the positive or negative direction depending on whether q is positive or negative. Show that a number and its opposite have a sum of 0 (are additive inverses). Interpret sums of rational numbers by describing real-world contexts. |

7.NS.1.c | Understand subtraction of rational numbers as adding the additive inverse, p – q = p + (–q). Show that the distance between two rational numbers on the number line is the absolute value of their difference, and apply this principle in real-world contexts. |

7.NS.2.a | Understand that multiplication is extended from fractions to rational numbers by requiring that operations continue to satisfy the properties of operations, particularly the distributive property, leading to products such as (–1)(–1) = 1 and the rules for multiplying signed numbers. Interpret products of rational numbers by describing real-world contexts. |

7.NS.2.b | Understand that integers can be divided, provided that the divisor is not zero, and every quotient of integers (with non-zero divisor) is a rational number. If p and q are integers, then –(p/q) = (–p)/q = p/(–q). Interpret quotients of rational numbers by describing real- world contexts. |

7.NS.3 | Solve real-world and mathematical problems involving the four operations with rational numbers. |

#### See how teachers are using Brainingcamp

#### Teacher Reviews

- Bring your math lessons to life!4December 10, 2015