# MathPickle

Visit Website

- graphing
- measurement
- patterns
- statistics

- self-reflection
- humility

- logic
- problem solving
- solving puzzles

- exploring interests

###### Pros

The puzzles and games emphasize problem-solving over rote memorization of math concepts.###### Cons

For such an ambitious topic, the site itself is fairly bare-bones; you'll have to dig to find activities aligned to your standards.###### Bottom Line

Teaching reasoning skills over memorization is laudable; a more interactive, kid-focused version of the site would be better.None

MathPickle's puzzles and games are fun and really make kids think. Compared to memorization, many kids love problem-solving. However, the videos here are meant more for teachers; you might not want to show them to a class.

It's great that kids are challenged to find patterns and figure out problems themselves. However, MathPickle misses a big opportunity to help teachers connect with Common Core Standards alignment.

There are great ideas here, and the PowerPoints and printables are free. However, better guidance for classroom use would be helpful. Site navigation leaves something to be desired. On the plus side, the YouTube videos can be translated.

While the videos have great ideas for teachers, they're not intended to be shown in a classroom. But teachers can certainly watch them to get ideas on how to excite kids about math. Don’t show your kids the video of someone else making the Batman logo with an equation; challenge them to try to figure it out themselves. Many of the activities here would be great if introduced to the whole class but worked on in small groups. Some of the "$1,000,000 challenge" problems might be best used to motivate advanced learners. Slideshow files (PowerPoint, Keynote, .pdf) and worksheets are available to help teachers provide these experiences for their kids.

Read More Read LessMathPickle is a collection of ideas for teachers who want to engage students with problem-solving puzzles and games. Each lesson idea comes in a short YouTube tutorial for teachers. The lesson ideas cover a variety of topics, and they're all designed to “Put your Kids in a Pickle” to engage their problem-solving skills. Many math concepts from the Common Core Standards are covered, but the site doesn't help you find them, as it's based in Canada.

Aside from some companion books, the site is free and encourages anyone to use and share the resources, as long as they only share exact copies and don't do it for profit. While concepts covered here are thought-provoking and complex, the site itself is bare-bones; basic navigation can be a bit confusing.

Read More Read LessMathPickle is the creation of Dr. Gordon Hamilton, a mathematician who believes in teaching math through problem-solving, not memorization. This philosophy is MathPickle's greatest asset –- the puzzles and games are fun, and kids will want to figure them out. Puzzles are thought-provoking and designed to have many potential solutions. In one game, kids are challenged to place a certain number of skyscrapers on a grid to make sure that no three line up in any way. The puzzle is tough, but by using manipulatives, kids are motivated to figure it out.

Content here is organized by math concept and grade level, but it's not Common Core-aligned. Games and puzzles address a variety of high-interest themes. One such example, however, may raise some eyebrows for appropriateness: Under the heading, "War Death and Nastiness Engage Students," one video explains an addition game for kids called "Termite Terrorists," where students are challenged to calculate termites by the "number martyred." Overall, though, most themes here are good-natured and unobjectionable.

Read More Read Less## Key Standards Supported

## Arithmetic With Polynomials And Rational Expressions | |

HSA.APR: Perform Arithmetic Operations On Polynomials | |

HSA.APR.1 | Understand that polynomials form a system analogous to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication; add, subtract, and multiply polynomials. |

## Counting And Cardinality | |

K.CC: Know Number Names And The Count Sequence. | |

K.CC.2 | Count forward beginning from a given number within the known sequence (instead of having to begin at 1). |

## Expressions And Equations | |

8.EE: Work With Radicals And Integer Exponents. | |

8.EE.1 | Know and apply the properties of integer exponents to generate equivalent numerical expressions. For example, 32 × 3–5 = 3–3 = 1/33 = 1/27. |

8.EE.4 | Perform operations with numbers expressed in scientific notation, including problems where both decimal and scientific notation are used. Use scientific notation and choose units of appropriate size for measurements of very large or very small quantities (e.g., use millimeters per year for seafloor spreading). Interpret scientific notation that has been generated by technology. |

## Functions | |

8.F: Define, Evaluate, And Compare Functions. | |

8.F.1 | Understand that a function is a rule that assigns to each input exactly one output. The graph of a function is the set of ordered pairs consisting of an input and the corresponding output.1 |

8.F.3 | Interpret the equation y = mx + b as defining a linear function, whose graph is a straight line; give examples of functions that are not linear. For example, the function A = s2 giving the area of a square as a function of its side length is not linear because its graph contains the points (1,1), (2,4) and (3,9), which are not on a straight line. |

## Geometry | |

4.G: Draw And Identify Lines And Angles, And Classify Shapes By Properties Of Their Lines And Angles. | |

4.G.3 | Recognize a line of symmetry for a two-dimensional figure as a line across the figure such that the figure can be folded along the line into matching parts. Identify line-symmetric figures and draw lines of symmetry. |

5.G: Graph Points On The Coordinate Plane To Solve Real-World And Mathematical Problems. | |

5.G.1 | Use a pair of perpendicular number lines, called axes, to define a coordinate system, with the intersection of the lines (the origin) arranged to coincide with the 0 on each line and a given point in the plane located by using an ordered pair of numbers, called its coordinates. Understand that the first number indicates how far to travel from the origin in the direction of one axis, and the second number indicates how far to travel in the direction of the second axis, with the convention that the names of the two axes and the coordinates correspond (e.g., x-axis and x-coordinate, y-axis and y-coordinate). |

6.G: Solve Real-World And Mathematical Problems Involving Area, Surface Area, And Volume. | |

6.G.1 | Find the area of right triangles, other triangles, special quadrilaterals, and polygons by composing into rectangles or decomposing into triangles and other shapes; apply these techniques in the context of solving real-world and mathematical problems. |

7.G: Solve Real-Life And Mathematical Problems Involving Angle Measure, Area, Surface Area, And Volume. | |

7.G.6 | Solve real-world and mathematical problems involving area, volume and surface area of two- and three-dimensional objects composed of triangles, quadrilaterals, polygons, cubes, and right prisms. |

## Measurement And Data | |

2.MD: Measure And Estimate Lengths In Standard Units. | |

2.MD.1 | Measure the length of an object by selecting and using appropriate tools such as rulers, yardsticks, meter sticks, and measuring tapes. |

3.MD: Geometric Measurement: Recognize Perimeter As An Attribute Of Plane Figures And Distinguish Between Linear And Area Measures. | |

3.MD.8 | Solve real world and mathematical problems involving perimeters of polygons, including finding the perimeter given the side lengths, finding an unknown side length, and exhibiting rectangles with the same perimeter and different areas or with the same area and different perimeters. |

Geometric Measurement: Understand Concepts Of Area And Relate Area To Multiplication And To Addition. | |

3.MD.6 | Measure areas by counting unit squares (square cm, square m, square in, square ft, and improvised units). |

K.MD: Classify Objects And Count The Number Of Objects In Each Category. | |

K.MD.3 | Classify objects into given categories; count the numbers of objects in each category and sort the categories by count.3 |

## Number And Operations In Base Ten | |

2.NBT: Use Place Value Understanding And Properties Of Operations To Add And Subtract. | |

2.NBT.6 | Add up to four two-digit numbers using strategies based on place value and properties of operations. |

## Operations And Algebraic Thinking | |

1.OA: Add And Subtract Within 20. | |

1.OA.5 | Relate counting to addition and subtraction (e.g., by counting on 2 to add 2). |

Represent And Solve Problems Involving Addition And Subtraction. | |

1.OA.1 | Use addition and subtraction within 20 to solve word problems involving situations of adding to, taking from, putting together, taking apart, and comparing, with unknowns in all positions, e.g., by using objects, drawings, and equations with a symbol for the unknown number to represent the problem.2 |

2.OA: Represent And Solve Problems Involving Addition And Subtraction. | |

2.OA.1 | Use addition and subtraction within 100 to solve one- and two-step word problems involving situations of adding to, taking from, putting together, taking apart, and comparing, with unknowns in all positions, e.g., by using drawings and equations with a symbol for the unknown number to represent the problem.1 |

Work With Equal Groups Of Objects To Gain Foundations For Multiplication. | |

2.OA.4 | Use addition to find the total number of objects arranged in rectangular arrays with up to 5 rows and up to 5 columns; write an equation to express the total as a sum of equal addends. |

3.OA: Represent And Solve Problems Involving Multiplication And Division. | |

3.OA.1 | Interpret products of whole numbers, e.g., interpret 5 × 7 as the total number of objects in 5 groups of 7 objects each. For example, describe a context in which a total number of objects can be expressed as 5 × 7. |

3.OA.2 | Interpret whole-number quotients of whole numbers, e.g., interpret 56 ÷ 8 as the number of objects in each share when 56 objects are partitioned equally into 8 shares, or as a number of shares when 56 objects are partitioned into equal shares of 8 objects each. For example, describe a context in which a number of shares or a number of groups can be expressed as 56 ÷ 8. |

4.OA: Generate And Analyze Patterns. | |

4.OA.5 | Generate a number or shape pattern that follows a given rule. Identify apparent features of the pattern that were not explicit in the rule itself. For example, given the rule “Add 3” and the starting number 1, generate terms in the resulting sequence and observe that the terms appear to alternate between odd and even numbers. Explain informally why the numbers will continue to alternate in this way. |

Use The Four Operations With Whole Numbers To Solve Problems. | |

4.OA.3 | Solve multistep word problems posed with whole numbers and having whole-number answers using the four operations, including problems in which remainders must be interpreted. Represent these problems using equations with a letter standing for the unknown quantity. Assess the reasonableness of answers using mental computation and estimation strategies including rounding. |