About Common Sense Privacy Ratings
Pass Full evaluation
ExploreLearning Gizmos: Science Grades 6-8
- Not intended for children under 13.
- Collection or use of data is limited to product requirements.
- Unclear whether this product displays personal information publicly.
- Unclear whether this product supports interactions between trusted users and/or students.
- Notice is provided in the event of a data breach.
- Unclear whether this product requires parental consent.
These Gizmos can be used with a broad range of students, even those in high school. However, not everything here will be appropriate for middle schoolers -– you may need to adapt some activities to meet their needs. Once you've found the right Gizmos for your class, devise a way to individualize students' inquiries. Since most of the Gizmos here have multiple variables to manipulate, every student in a class can design his or her own investigation. In "Rabbit Population by Season," one student could examine how land area impacts a population; another might choose to look at the impact of a harsh winter. This experiment would be impossible given the traditional constraints of most classrooms, but ExploreLearning removes these barriers with an innovative way for kids to experiment.
The science Gizmos also provide scaffolding to help kids learn how to interpret data. The Photosynthesis Lab could seem overwhelming at first, but it can work well if you begin by assigning each pair of students a different set of variables to explore. Since the Gizmo produces a graph for them, students can simply focus on figuring out what their data means. Each pair could then share their results with the class. This gives everyone a chance to build understanding about photosynthesis together, modeling collaboration within the scientific community.
Continue reading Show lessKey Standards Supported
Biological Evolution: Unity and Diversity
- MS-LS4-1
Analyze and interpret data for patterns in the fossil record that document the existence, diversity, extinction, and change of life forms throughout the history of life on Earth under the assumption that natural laws operate today as in the past.
- MS-LS4-2
Apply scientific ideas to construct an explanation for the anatomical similarities and differences among modern organisms and between modern and fossil organisms to infer evolutionary relationships.
- MS-LS4-3
Analyze displays of pictorial data to compare patterns of similarities in the embryological development across multiple species to identify relationships not evident in the fully formed anatomy.
- MS-LS4-4
Construct an explanation based on evidence that describes how genetic variations of traits in a population increase some individuals’ probability of surviving and reproducing in a specific environment.
- MS-LS4-5
Gather and synthesize information about the technologies that have changed the way humans influence the inheritance of desired traits in organisms.
- MS-LS4-6
Use mathematical representations to support explanations of how natural selection may lead to increases and decreases of specific traits in populations over time.
Earth and Human Activity
- MS-ESS3-2
Analyze and interpret data on natural hazards to forecast future catastrophic events and inform the development of technologies to mitigate their effects.
- MS-ESS3-3
Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment.
- MS-ESS3-4
Construct an argument supported by evidence for how increases in human population and per-capita consumption of natural resources impact Earth’s systems.
- MS-ESS3-5
Ask questions to clarify evidence of the factors that have caused the rise in global temperatures over the past century.
Earth’s Place in the Universe
- MS-ESS1-1
Develop and use a model of the Earth-sun-moon system to describe the cyclic patterns of lunar phases, eclipses of the sun and moon, and seasons.
- MS-ESS1-2
Develop and use a model to describe the role of gravity in the motions within galaxies and the solar system.
- MS-ESS1-3
Analyze and interpret data to determine scale properties of objects in the solar system.
Earth’s Systems
- MS-ESS2-1
Develop a model to describe the cycling of Earth’s materials and the flow of energy that drives this process.
- MS-ESS2-2
Construct an explanation based on evidence for how geoscience processes have changed Earth’s surface at varying time and spatial scales.
- MS-ESS2-3
Analyze and interpret data on the distribution of fossils and rocks, continental shapes, and seafloor structures to provide evidence of the past plate motions.
- MS-ESS2-5
Collect data to provide evidence for how the motions and complex interactions of air masses results in changes in weather conditions.
Ecosystems: Interactions, Energy, and Dynamics
- MS-LS2-1
Analyze and interpret data to provide evidence for the effects of resource availability on organisms and populations of organisms in an ecosystem.
- MS-LS2-2
Construct an explanation that predicts patterns of interactions among organisms across multiple ecosystems.
- MS-LS2-3
Develop a model to describe the cycling of matter and flow of energy among living and nonliving parts of an ecosystem.
- MS-LS2-4
Construct an argument supported by empirical evidence that changes to physical or biological components of an ecosystem affect populations.
- MS-LS2-5
Evaluate competing design solutions for maintaining biodiversity and ecosystem services.
Energy
- MS-PS3-1
Construct and interpret graphical displays of data to describe the relationships of kinetic energy to the mass of an object and to the speed of an object.
- MS-PS3-2
Develop a model to describe that when the arrangement of objects interacting at a distance changes, different amounts of potential energy are stored in the system.
- MS-PS3-4
Plan an investigation to determine the relationships among the energy transferred, the type of matter, the mass, and the change in the average kinetic energy of the particles as measured by the temperature of the sample.
Engineering Design
- MS-ETS1-2
Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.
- MS-ETS1-3
Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success.
From Molecules to Organisms: Structures and Processes
- MS-LS1-2
Develop and use a model to describe the function of a cell as a whole and ways parts of cells contribute to the function.
- MS-LS1-3
Use argument supported by evidence for how the body is a system of interacting subsystems composed of groups of cells.
- MS-LS1-5
Construct a scientific explanation based on evidence for how environmental and genetic factors influence the growth of organisms.
- MS-LS1-6
Construct a scientific explanation based on evidence for the role of photosynthesis in the cycling of matter and flow of energy into and out of organisms.
- MS-LS1-7
Develop a model to describe how food is rearranged through chemical reactions forming new molecules that support growth and/or release energy as this matter moves through an organism.
- MS-LS1-8
Gather and synthesize information that sensory receptors respond to stimuli by sending messages to the brain for immediate behavior or storage as memories.
Matter and Its Interactions
- MS-PS1-1
Develop models to describe the atomic composition of simple molecules and extended structures.
- MS-PS1-4
Develop a model that predicts and describes changes in particle motion, temperature, and state of a pure substance when thermal energy is added or removed.
- MS-PS1-5
Develop and use a model to describe how the total number of atoms does not change in a chemical reaction and thus mass is conserved.
Motion and Stability: Forces and Interactions
- MS-PS2-1
Apply Newton’s Third Law to design a solution to a problem involving the motion of two colliding objects.
- MS-PS2-2
Plan an investigation to provide evidence that the change in an object’s motion depends on the sum of the forces on the object and the mass of the object.
- MS-PS2-3
Ask questions about data to determine the factors that affect the strength of electric and magnetic forces.
- MS-PS2-4
Construct and present arguments using evidence to support the claim that gravitational interactions are attractive and depend on the masses of interacting objects.
- MS-PS2-5
Conduct an investigation and evaluate the experimental design to provide evidence that fields exist between objects exerting forces on each other even though the objects are not in contact.
Waves and Their Applications in Technologies for Information Transfer
- MS-PS4-1
Use mathematical representations to describe a simple model for waves that includes how the amplitude of a wave is related to the energy in a wave.
- MS-PS4-2
Develop and use a model to describe that waves are reflected, absorbed, or transmitted through various materials.
Community Rating
Privacy Rating
Continue reading about this tool's privacy practices, including data collection, sharing, and security.
Explore Our Favorite Tools
-
STEAM Games, Apps, and SitesMultidisciplinary tech that'll get inventive students thinking, tinkering, experimenting, engineering, and creating.Grades 2–12Arts, Math, Science
-
Resources for After-School Enrichment Programs and ClubsExtend learning beyond the school day.Grades K–12Arts, Science, Health & WellnessCollege & Career Prep
-
Best Robotics Apps and Websites for STEM ClassroomsGet students making and coding with robots.Grades Pre-K–12ScienceCritical Thinking