Subjects
 Math
Skills
 Critical Thinking
About Common Sense Privacy Ratings
Pass Full evaluation
ExploreLearning Gizmos: Mathematics Grades 35
 Not intended for children under 13.
 Collection or use of data is limited to product requirements.
 Unclear whether this product displays personal information publicly.
 Unclear whether this product supports interactions between trusted users and/or students.
 Notice is provided in the event of a data breach.
 Unclear whether this product requires parental consent.
Within the Mathematics Grades 35 module, more than 40 interactive Gizmos cross all relevant topics. Most options are stellar, exploring math in interesting and engaging situations. Use the site for instruction by using a Gizmo along with its Student Exploration Sheet. Use the warmup section with the whole class as an orientation, then have students continue individually or in pairs. Circulate to check responses and engage with kids. Alternately, use the Gizmos for more practice after you’ve taught a concept. While kids work individually on preselected Gizmos, you'll have valuable time to assess or reteach concepts.
Standouts:
 Younger kids will love the Critter Count activity for conceptualizing multiplication as repeated addition.
 Balancing Blocks challenges older kids to practice area and volume while considering balance.
 Pattern Finder impressively combines algebraic and scientific thinking, asking students to determine and test hypotheses for frogs' jump patterns.
Key Standards Supported
Geometry
 4.G.1
Draw points, lines, line segments, rays, angles (right, acute, obtuse), and perpendicular and parallel lines. Identify these in twodimensional figures.
 4.G.2
Classify twodimensional figures based on the presence or absence of parallel or perpendicular lines, or the presence or absence of angles of a specified size. Recognize right triangles as a category, and identify right triangles.
 4.G.3
Recognize a line of symmetry for a twodimensional figure as a line across the figure such that the figure can be folded along the line into matching parts. Identify linesymmetric figures and draw lines of symmetry.
 6.G.1
Find the area of right triangles, other triangles, special quadrilaterals, and polygons by composing into rectangles or decomposing into triangles and other shapes; apply these techniques in the context of solving realworld and mathematical problems.
 6.G.2
Find the volume of a right rectangular prism with fractional edge lengths by packing it with unit cubes of the appropriate unit fraction edge lengths, and show that the volume is the same as would be found by multiplying the edge lengths of the prism. Apply the formulas V = l w h and V = b h to find volumes of right rectangular prisms with fractional edge lengths in the context of solving realworld and mathematical problems.
 6.G.3
Draw polygons in the coordinate plane given coordinates for the vertices; use coordinates to find the length of a side joining points with the same first coordinate or the same second coordinate. Apply these techniques in the context of solving realworld and mathematical problems.
 6.G.4
Represent threedimensional figures using nets made up of rectangles and triangles, and use the nets to find the surface area of these figures. Apply these techniques in the context of solving realworld and mathematical problems.
 8.G.9
Know the formulas for the volumes of cones, cylinders, and spheres and use them to solve realworld and mathematical problems.
 8.G.6
Explain a proof of the Pythagorean Theorem and its converse.
 8.G.7
Apply the Pythagorean Theorem to determine unknown side lengths in right triangles in realworld and mathematical problems in two and three dimensions.
 8.G.8
Apply the Pythagorean Theorem to find the distance between two points in a coordinate system.
 8.G.1
Verify experimentally the properties of rotations, reflections, and translations:
 8.G.1.a
Lines are taken to lines, and line segments to line segments of the same length.
 8.G.1.b
Angles are taken to angles of the same measure.
 8.G.1.c
Parallel lines are taken to parallel lines.
 8.G.2
Understand that a twodimensional figure is congruent to another if the second can be obtained from the first by a sequence of rotations, reflections, and translations; given two congruent figures, describe a sequence that exhibits the congruence between them.
 8.G.3
Describe the effect of dilations, translations, rotations, and reflections on twodimensional figures using coordinates.
 8.G.4
Understand that a twodimensional figure is similar to another if the second can be obtained from the first by a sequence of rotations, reflections, translations, and dilations; given two similar two dimensional figures, describe a sequence that exhibits the similarity between them.
 8.G.5
Use informal arguments to establish facts about the angle sum and exterior angle of triangles, about the angles created when parallel lines are cut by a transversal, and the angleangle criterion for similarity of triangles. For example, arrange three copies of the same triangle so that the sum of the three angles appears to form a line, and give an argument in terms of transversals why this is so.
Measurement And Data
 3.MD.8
Solve real world and mathematical problems involving perimeters of polygons, including finding the perimeter given the side lengths, finding an unknown side length, and exhibiting rectangles with the same perimeter and different areas or with the same area and different perimeters.
 3.MD.5
Recognize area as an attribute of plane figures and understand concepts of area measurement.
 3.MD.5.a
A square with side length 1 unit, called “a unit square,” is said to have “one square unit” of area, and can be used to measure area.
 3.MD.5.b
A plane figure which can be covered without gaps or overlaps by n unit squares is said to have an area of n square units.
 3.MD.6
Measure areas by counting unit squares (square cm, square m, square in, square ft, and improvised units).
 3.MD.7
Relate area to the operations of multiplication and addition.
 3.MD.7.a
Find the area of a rectangle with wholenumber side lengths by tiling it, and show that the area is the same as would be found by multiplying the side lengths.
 3.MD.7.b
Multiply side lengths to find areas of rectangles with whole number side lengths in the context of solving real world and mathematical problems, and represent wholenumber products as rectangular areas in mathematical reasoning.
 3.MD.7.c
Use tiling to show in a concrete case that the area of a rectangle with wholenumber side lengths a and b + c is the sum of a × b and a × c. Use area models to represent the distributive property in mathematical reasoning.
 3.MD.7.d
Recognize area as additive. Find areas of rectilinear figures by decomposing them into nonoverlapping rectangles and adding the areas of the nonoverlapping parts, applying this technique to solve real world problems.
 3.MD.3
Draw a scaled picture graph and a scaled bar graph to represent a data set with several categories. Solve one and twostep “how many more” and “how many less” problems using information presented in scaled bar graphs. For example, draw a bar graph in which each square in the bar graph might represent 5 pets.
 3.MD.4
Generate measurement data by measuring lengths using rulers marked with halves and fourths of an inch. Show the data by making a line plot, where the horizontal scale is marked off in appropriate units— whole numbers, halves, or quarters.
 3.MD.1
Tell and write time to the nearest minute and measure time intervals in minutes. Solve word problems involving addition and subtraction of time intervals in minutes, e.g., by representing the problem on a number line diagram.
 3.MD.2
Measure and estimate liquid volumes and masses of objects using standard units of grams (g), kilograms (kg), and liters (l).6 Add, subtract, multiply, or divide to solve onestep word problems involving masses or volumes that are given in the same units, e.g., by using drawings (such as a beaker with a measurement scale) to represent the problem.7
 4.MD.5
Recognize angles as geometric shapes that are formed wherever two rays share a common endpoint, and understand concepts of angle measurement:
 4.MD.5.a
An angle is measured with reference to a circle with its center at the common endpoint of the rays, by considering the fraction of the circular arc between the points where the two rays intersect the circle. An angle that turns through 1/360 of a circle is called a “onedegree angle,” and can be used to measure angles.
 4.MD.5.b
An angle that turns through n onedegree angles is said to have an angle measure of n degrees.
 4.MD.6
Measure angles in wholenumber degrees using a protractor. Sketch angles of specified measure.
 4.MD.7
Recognize angle measure as additive. When an angle is decomposed into nonoverlapping parts, the angle measure of the whole is the sum of the angle measures of the parts. Solve addition and subtraction problems to find unknown angles on a diagram in real world and mathematical problems, e.g., by using an equation with a symbol for the unknown angle measure.
 4.MD.4
Make a line plot to display a data set of measurements in fractions of a unit (1/2, 1/4, 1/8). Solve problems involving addition and subtraction of fractions by using information presented in line plots. For example, from a line plot find and interpret the difference in length between the longest and shortest specimens in an insect collection.
 4.MD.1
Know relative sizes of measurement units within one system of units including km, m, cm; kg, g; lb, oz.; l, ml; hr, min, sec. Within a single system of measurement, express measurements in a larger unit in terms of a smaller unit. Record measurement equivalents in a two column table. For example, know that 1 ft is 12 times as long as 1 in. Express the length of a 4 ft snake as 48 in. Generate a conversion table for feet and inches listing the number pairs (1, 12), (2, 24), (3, 36), ...
 4.MD.2
Use the four operations to solve word problems involving distances, intervals of time, liquid volumes, masses of objects, and money, including problems involving simple fractions or decimals, and problems that require expressing measurements given in a larger unit in terms of a smaller unit. Represent measurement quantities using diagrams such as number line diagrams that feature a measurement scale.
 4.MD.3
Apply the area and perimeter formulas for rectangles in real world and mathematical problems. For example, find the width of a rectangular room given the area of the flooring and the length, by viewing the area formula as a multiplication equation with an unknown factor.
 5.MD.1
Convert among differentsized standard measurement units within a given measurement system (e.g., convert 5 cm to 0.05 m), and use these conversions in solving multistep, real world problems.
 5.MD.3
Recognize volume as an attribute of solid figures and understand concepts of volume measurement.
 5.MD.3.a
A cube with side length 1 unit, called a “unit cube,” is said to have “one cubic unit” of volume, and can be used to measure volume.
 5.MD.3.b
A solid figure which can be packed without gaps or overlaps using n unit cubes is said to have a volume of n cubic units.
 5.MD.4
Measure volumes by counting unit cubes, using cubic cm, cubic in, cubic ft, and improvised units.
 5.MD.5
Relate volume to the operations of multiplication and addition and solve real world and mathematical problems involving volume.
 5.MD.5.a
Find the volume of a right rectangular prism with wholenumber side lengths by packing it with unit cubes, and show that the volume is the same as would be found by multiplying the edge lengths, equivalently by multiplying the height by the area of the base. Represent threefold wholenumber products as volumes, e.g., to represent the associative property of multiplication.
 5.MD.5.b
Apply the formulas V=l×w×handV=b×h for rectangular prisms to find volumes of right rectangular prisms with whole number edge lengths in the context of solving real world and mathematical problems.
 5.MD.5.c
Recognize volume as additive. Find volumes of solid figures composed of two nonoverlapping right rectangular prisms by adding the volumes of the nonoverlapping parts, applying this technique to solve real world problems.
 5.MD.2
Make a line plot to display a data set of measurements in fractions of a unit (1/2, 1/4, 1/8). Use operations on fractions for this grade to solve problems involving information presented in line plots. For example, given different measurements of liquid in identical beakers, find the amount of liquid each beaker would contain if the total amount in all the beakers were redistributed equally.
Number And Operations In Base Ten
 4.NBT.1
Recognize that in a multidigit whole number, a digit in one place represents ten times what it represents in the place to its right. For example, recognize that 700 ÷ 70 = 10 by applying concepts of place value and division.
 4.NBT.2
Read and write multidigit whole numbers using baseten numerals, number names, and expanded form. Compare two multidigit numbers based on meanings of the digits in each place, using >, =, and < symbols to record the results of comparisons.
 4.NBT.3
Use place value understanding to round multidigit whole numbers to any place.
 4.NBT.4
Fluently add and subtract multidigit whole numbers using the standard algorithm.
 4.NBT.5
Multiply a whole number of up to four digits by a onedigit whole number, and multiply two twodigit numbers, using strategies based on place value and the properties of operations. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models.
 4.NBT.6
Find wholenumber quotients and remainders with up to fourdigit dividends and onedigit divisors, using strategies based on place value, the properties of operations, and/or the relationship between multiplication and division. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models.
Number And Operations—Fractions
 5.NF.3
Interpret a fraction as division of the numerator by the denominator (a/b = a ÷ b). Solve word problems involving division of whole numbers leading to answers in the form of fractions or mixed numbers, e.g., by using visual fraction models or equations to represent the problem. For example, interpret 3/4 as the result of dividing 3 by 4, noting that 3/4 multiplied by 4 equals 3, and that when 3 wholes are shared equally among 4 people each person has a share of size 3/4. If 9 people want to share a 50pound sack of rice equally by weight, how many pounds of rice should each person get? Between what two whole numbers does your answer lie?
 5.NF.4
Apply and extend previous understandings of multiplication to multiply a fraction or whole number by a fraction.
 5.NF.4.a
Interpret the product (a/b) × q as a parts of a partition of q into b equal parts; equivalently, as the result of a sequence of operations a × q ÷ b. For example, use a visual fraction model to show (2/3) × 4 = 8/3, and create a story context for this equation. Do the same with (2/3) × (4/5) = 8/15. (In general, (a/b) × (c/d) = ac/bd.)
 5.NF.4.b
Find the area of a rectangle with fractional side lengths by tiling it with unit squares of the appropriate unit fraction side lengths, and show that the area is the same as would be found by multiplying the side lengths. Multiply fractional side lengths to find areas of rectangles, and represent fraction products as rectangular areas.
 5.NF.5
Interpret multiplication as scaling (resizing), by:
 5.NF.5.a
Comparing the size of a product to the size of one factor on the basis of the size of the other factor, without performing the indicated multiplication.
 5.NF.5.b
Explaining why multiplying a given number by a fraction greater than 1 results in a product greater than the given number (recognizing multiplication by whole numbers greater than 1 as a familiar case); explaining why multiplying a given number by a fraction less than 1 results in a product smaller than the given number; and relating the principle of fraction equivalence a/b = (n×a)/(n×b) to the effect of multiplying a/b by 1.
 5.NF.6
Solve real world problems involving multiplication of fractions and mixed numbers, e.g., by using visual fraction models or equations to represent the problem.
 5.NF.7
Apply and extend previous understandings of division to divide unit fractions by whole numbers and whole numbers by unit fractions.1
 5.NF.7.a
Interpret division of a unit fraction by a nonzero whole number, and compute such quotients. For example, create a story context for (1/3) ÷ 4, and use a visual fraction model to show the quotient. Use the relationship between multiplication and division to explain that (1/3) ÷ 4 = 1/12 because (1/12) × 4 = 1/3.
 5.NF.7.b
Interpret division of a whole number by a unit fraction, and compute such quotients. For example, create a story context for 4 ÷ (1/5), and use a visual fraction model to show the quotient. Use the relationship between multiplication and division to explain that 4 ÷ (1/5) = 20 because 20 × (1/5) = 4.
 5.NF.7.c
Solve real world problems involving division of unit fractions by nonzero whole numbers and division of whole numbers by unit fractions, e.g., by using visual fraction models and equations to represent the problem. For example, how much chocolate will each person get if 3 people share 1/2 lb of chocolate equally? How many 1/3cup servings are in 2 cups of raisins?
 5.NF.1
Add and subtract fractions with unlike denominators (including mixed numbers) by replacing given fractions with equivalent fractions in such a way as to produce an equivalent sum or difference of fractions with like denominators. For example, 2/3 + 5/4 = 8/12 + 15/12 = 23/12. (In general, a/b + c/d = (ad + bc)/bd.)
 5.NF.2
Solve word problems involving addition and subtraction of fractions referring to the same whole, including cases of unlike denominators, e.g., by using visual fraction models or equations to represent the problem. Use benchmark fractions and number sense of fractions
 4.NF.3
Understand a fraction a/b with a > 1 as a sum of fractions 1/b. a.
 4.NF.3.a
Understand addition and subtraction of fractions as joining and separating parts referring to the same whole.
 4.NF.3.b
Decompose a fraction into a sum of fractions with the same denominator in more than one way, recording each decomposition by an equation. Justify decompositions, e.g., by using a visual fraction model. Examples: 3/8 = 1/8 + 1/8 + 1/8 ; 3/8 = 1/8 + 2/8 ; 2 1/8 = 1 + 1 + 1/8 = 8/8 + 8/8 + 1/8.
 4.NF.3.c
Add and subtract mixed numbers with like denominators, e.g., by replacing each mixed number with an equivalent fraction, and/or by using properties of operations and the relationship between addition and subtraction.
 4.NF.3.d
Solve word problems involving addition and subtraction of fractions referring to the same whole and having like denominators, e.g., by using visual fraction models and equations to represent the problem.
 4.NF.4
Apply and extend previous understandings of multiplication to multiply a fraction by a whole number.
 4.NF.4.a
Understand a fraction a/b as a multiple of 1/b. For example, use a visual fraction model to represent 5/4 as the product 5 × (1/4), recording the conclusion by the equation 5/4 = 5 × (1/4).
 4.NF.4.b
Understand a multiple of a/b as a multiple of 1/b, and use this understanding to multiply a fraction by a whole number. For example, use a visual fraction model to express 3 × (2/5) as 6 × (1/5), recognizing this product as 6/5. (In general, n × (a/b) = (n × a)/b.)
 4.NF.4.c
Solve word problems involving multiplication of a fraction by a whole number, e.g., by using visual fraction models and equations to represent the problem. For example, if each person at a party will eat 3/8 of a pound of roast beef, and there will be 5 people at the party, how many pounds of roast beef will be needed? Between what two whole numbers does your answer lie?
 4.NF.1
Explain why a fraction a/b is equivalent to a fraction (n × a)/(n × b) by using visual fraction models, with attention to how the number and size of the parts differ even though the two fractions themselves are the same size. Use this principle to recognize and generate equivalent fractions.
 4.NF.2
Compare two fractions with different numerators and different denominators, e.g., by creating common denominators or numerators, or by comparing to a benchmark fraction such as 1/2. Recognize that comparisons are valid only when the two fractions refer to the same whole. Record the results of comparisons with symbols >, =, or <, and justify the conclusions, e.g., by using a visual fraction model.
 4.NF.5
Express a fraction with denominator 10 as an equivalent fraction with denominator 100, and use this technique to add two fractions with respective denominators 10 and 100.4 For example, express 3/10 as 30/100, and add 3/10 + 4/100 = 34/100.
 4.NF.6
Use decimal notation for fractions with denominators 10 or 100. For example, rewrite 0.62 as 62/100; describe a length as 0.62 meters; locate 0.62 on a number line diagram.
 4.NF.7
Compare two decimals to hundredths by reasoning about their size. Recognize that comparisons are valid only when the two decimals refer to the same whole. Record the results of comparisons with the symbols >, =, or <, and justify the conclusions, e.g., by using a visual model.
 3.NF.1
Understand a fraction 1/b as the quantity formed by 1 part when a whole is partitioned into b equal parts; understand a fraction a/b as the quantity formed by a parts of size 1/b.
 3.NF.2
Understand a fraction as a number on the number line; represent fractions on a number line diagram.
 3.NF.2.a
Represent a fraction 1/b on a number line diagram by defining the interval from 0 to 1 as the whole and partitioning it into b equal parts. Recognize that each part has size 1/b and that the endpoint of the part based at 0 locates the number 1/b on the number line.
 3.NF.2.b
Represent a fraction a/b on a number line diagram by marking off a lengths 1/b from 0. Recognize that the resulting interval has size a/b and that its endpoint locates the number a/b on the number line.
 3.NF.3
Explain equivalence of fractions in special cases, and compare fractions by reasoning about their size.
 3.NF.3.a
Understand two fractions as equivalent (equal) if they are the same size, or the same point on a number line.
 3.NF.3.b
Recognize and generate simple equivalent fractions, e.g., 1/2 = 2/4, 4/6 = 2/3). Explain why the fractions are equivalent, e.g., by using a visual fraction model.
 3.NF.3.c
Express whole numbers as fractions, and recognize fractions that are equivalent to whole numbers. Examples: Express 3 in the form 3 = 3/1; recognize that 6/1 = 6; locate 4/4 and 1 at the same point of a number line diagram.
 3.NF.3.d
Compare two fractions with the same numerator or the same denominator by reasoning about their size. Recognize that comparisons are valid only when the two fractions refer to the same whole. Record the results of comparisons with the symbols >, =, or <, and justify the conclusions, e.g., by using a visual fraction model.
Operations And Algebraic Thinking
 3.OA.7
Fluently multiply and divide within 100, using strategies such as the relationship between multiplication and division (e.g., knowing that 8 × 5 = 40, one knows 40 ÷ 5 = 8) or properties of operations. By the end of Grade 3, know from memory all products of two onedigit numbers.
 3.OA.1
Interpret products of whole numbers, e.g., interpret 5 × 7 as the total number of objects in 5 groups of 7 objects each. For example, describe a context in which a total number of objects can be expressed as 5 × 7.
 3.OA.2
Interpret wholenumber quotients of whole numbers, e.g., interpret 56 ÷ 8 as the number of objects in each share when 56 objects are partitioned equally into 8 shares, or as a number of shares when 56 objects are partitioned into equal shares of 8 objects each. For example, describe a context in which a number of shares or a number of groups can be expressed as 56 ÷ 8.
 3.OA.3
Use multiplication and division within 100 to solve word problems in situations involving equal groups, arrays, and measurement quantities, e.g., by using drawings and equations with a symbol for the unknown number to represent the problem.1
 3.OA.4
Determine the unknown whole number in a multiplication or division equation relating three whole numbers. For example, determine the unknown number that makes the equation true in each of the equations 8 × ? = 48, 5 = _ ÷ 3, 6 × 6 = ?.
 3.OA.8
Solve twostep word problems using the four operations. Represent these problems using equations with a letter standing for the unknown quantity. Assess the reasonableness of answers using mental computation and estimation strategies including rounding.3
 3.OA.9
Identify arithmetic patterns (including patterns in the addition table or multiplication table), and explain them using properties of operations. For example, observe that 4 times a number is always even, and explain why 4 times a number can be decomposed into two equal addends.
 3.OA.5
Apply properties of operations as strategies to multiply and divide.2 Examples: If 6 × 4 = 24 is known, then 4 × 6 = 24 is also known. (Commutative property of multiplication.) 3 × 5 × 2 can be found by 3 × 5 = 15, then 15 × 2 = 30, or by 5 × 2 = 10, then 3 × 10 = 30. (Associative property of multiplication.) Knowing that 8 × 5 = 40 and 8 × 2 = 16, one can find 8 × 7 as 8 × (5 + 2) = (8 × 5) + (8 × 2) = 40 + 16 = 56. (Distributive property.)
 3.OA.6
Understand division as an unknownfactor problem. For example, find 32 ÷ 8 by finding the number that makes 32 when multiplied by 8.
 4.OA.4
Find all factor pairs for a whole number in the range 1–100. Recognize that a whole number is a multiple of each of its factors. Determine whether a given whole number in the range 1–100 is a multiple of a given onedigit number. Determine whether a given whole number in the range 1–100 is prime or composite.
 4.OA.5
Generate a number or shape pattern that follows a given rule. Identify apparent features of the pattern that were not explicit in the rule itself. For example, given the rule “Add 3” and the starting number 1, generate terms in the resulting sequence and observe that the terms appear to alternate between odd and even numbers. Explain informally why the numbers will continue to alternate in this way.
 4.OA.1
Interpret a multiplication equation as a comparison, e.g., interpret 35 = 5 × 7 as a statement that 35 is 5 times as many as 7 and 7 times as many as 5. Represent verbal statements of multiplicative comparisons as multiplication equations.
 4.OA.2
Multiply or divide to solve word problems involving multiplicative comparison, e.g., by using drawings and equations with a symbol for the unknown number to represent the problem, distinguishing multiplicative comparison from additive comparison.1
 4.OA.3
Solve multistep word problems posed with whole numbers and having wholenumber answers using the four operations, including problems in which remainders must be interpreted. Represent these problems using equations with a letter standing for the unknown quantity. Assess the reasonableness of answers using mental computation and estimation strategies including rounding.
Statistics And Probability
 6.SP.1
Recognize a statistical question as one that anticipates variability in the data related to the question and accounts for it in the answers. For example, “How old am I?” is not a statistical question, but “How old are the students in my school?” is a statistical question because one anticipates variability in students’ ages.
 6.SP.2
Understand that a set of data collected to answer a statistical question has a distribution which can be described by its center, spread, and overall shape.
 6.SP.3
Recognize that a measure of center for a numerical data set summarizes all of its values with a single number, while a measure of variation describes how its values vary with a single number.
 6.SP.4
Display numerical data in plots on a number line, including dot plots, histograms, and box plots.
 6.SP.5
Summarize numerical data sets in relation to their context, such as by:
 6.SP.5.a
Reporting the number of observations.
 6.SP.5.b
Describing the nature of the attribute under investigation, including how it was measured and its units of measurement.
 6.SP.5.c
Giving quantitative measures of center (median and/or mean) and variability (interquartile range and/or mean absolute deviation), as well as describing any overall pattern and any striking deviations from the overall pattern with reference to the context in which the data were gathered.
 6.SP.5.d
Relating the choice of measures of center and variability to the shape of the data distribution and the context in which the data were gathered.
Teacher Reviews
There aren't any teacher reviews yet. Be the first to review this tool.
Write a reviewPrivacy Rating
Explore Our Favorite Tools

Top Fractions Apps and WebsitesElementary schoolage tech for learning key fractions concepts.Grades 2  6MathCritical Thinking

Math Apps and Games for Preschool and KindergartenThese favorites add up to early math mastery.Grades PreK  4Math

Great Games, Apps, and Sites for GeometryOur favorite geometry tools for students of all levels.Grades PreK  12MathCritical Thinking