# Gazillionaire!

- counting
- money
- statistics

- the economy

- self-control

###### Pros

Comprehensive coverage of entrepreneurship, fiscal responsibility, and math skills.###### Cons

The graphics and sound are outdated, and there's no teacher dashboard for monitoring student performance.###### Bottom Line

This in-depth business sim has educational gameplay wrapped in basic production values.Teachers can follow a link on the website to download a free e-book of lesson plans and worksheets.

The graphics and sound are dated, but the game has a lot of depth and detail that could engage high achievers.

Entrepreneurship, fiscal responsibility, and management get taught in-depth, but there's too much piled on too quickly. Gritty kids who stick with it should be able to transfer learning to the real world.

There are tutorials, but they're not ramped as well as they could be. Players can monitor progress with charts and graphs. The developer's website links to teacher worksheets.

Teachers could use this excellent simulation to introduce and corroborate the themes of fiscal responsibility and business management, life skills that are easily coached with this game. It's engaging and competitive enough for all ages -- you might get sucked in yourself. Players must weigh risks and think ahead to win.

Read More Read LessWe knew the super-rich were out there, but the in-depth business sim *Gazillionaire!* is actually set in outer space. The goal is to pilot a trade ship through space, buying and selling goods at a high profit, and you win by achieving a certain level of wealth. Kids play against other computer-controlled characters who become their "competition," using the mouse to control the menu-driven game. Increasing complexity challenges them to juggle paying taxes, hiring a crew, advertising, and investing in the stock market. Much of the game is spent studying charts and graphs and applying that information to make profitable business decisions.

Kids will be engaged enough to apply the information they learn to make good business decisions -- and that's teaching them how to succeed.* Gazillionaire!* starts off simply and gradually introduces more complex concepts. An excellent tutorial introduces new features. Kids can opt out of individual concepts if they seem too difficult, allowing the game to accommodate players from about Grade 3 to adult. Feedback praises good decisions, calls out bad ones, and offers advice on how to avoid the same mistakes again. One of the game's unique features allows up to six real players to team up and play in a single game via email, taking turns one at a time. Almost everything about *Gazillionaire!* is customizable, with five levels and the ability to adjust complexity via a sliding scale.

## Key Standards Supported

## Expressions And Equations | |

6.EE: Represent And Analyze Quantitative Relationships Between Dependent And Independent Variables. | |

6.EE.9 | Use variables to represent two quantities in a real-world problem that change in relationship to one another; write an equation to express one quantity, thought of as the dependent variable, in terms of the other quantity, thought of as the independent variable. Analyze the relationship between the dependent and independent variables using graphs and tables, and relate these to the equation. For example, in a problem involving motion at constant speed, list and graph ordered pairs of distances and times, and write the equation d = 65t to represent the relationship between distance and time. |

7.EE: Solve Real-Life And Mathematical Problems Using Numerical And Algebraic Expressions And Equations. | |

7.EE.3 | Solve multi-step real-life and mathematical problems posed with positive and negative rational numbers in any form (whole numbers, fractions, and decimals), using tools strategically. Apply properties of operations to calculate with numbers in any form; convert between forms as appropriate; and assess the reasonableness of answers using mental computation and estimation strategies. For example: If a woman making $25 an hour gets a 10% raise, she will make an additional 1/10 of her salary an hour, or $2.50, for a new salary of $27.50. If you want to place a towel bar 9 3/4 inches long in the center of a door that is 27 1/2 inches wide, you will need to place the bar about 9 inches from each edge; this estimate can be used as a check on the exact computation. |

7.EE.4.b | Solve word problems leading to inequalities of the form px + q > r or px + q < r, where p, q, and r are specific rational numbers. Graph the solution set of the inequality and interpret it in the context of the problem. For example: As a salesperson, you are paid $50 per week plus $3 per sale. This week you want your pay to be at least $100. Write an inequality for the number of sales you need to make, and describe the solutions. |

## Measurement And Data | |

3.MD: Represent And Interpret Data. | |

3.MD.3 | Draw a scaled picture graph and a scaled bar graph to represent a data set with several categories. Solve one- and two-step “how many more” and “how many less” problems using information presented in scaled bar graphs. For example, draw a bar graph in which each square in the bar graph might represent 5 pets. |

4.MD: Solve Problems Involving Measurement And Conversion Of Measurements From A Larger Unit To A Smaller Unit. | |

4.MD.1 | Know relative sizes of measurement units within one system of units including km, m, cm; kg, g; lb, oz.; l, ml; hr, min, sec. Within a single system of measurement, express measurements in a larger unit in terms of a smaller unit. Record measurement equivalents in a two- column table. For example, know that 1 ft is 12 times as long as 1 in. Express the length of a 4 ft snake as 48 in. Generate a conversion table for feet and inches listing the number pairs (1, 12), (2, 24), (3, 36), ... |

4.MD.2 | Use the four operations to solve word problems involving distances, intervals of time, liquid volumes, masses of objects, and money, including problems involving simple fractions or decimals, and problems that require expressing measurements given in a larger unit in terms of a smaller unit. Represent measurement quantities using diagrams such as number line diagrams that feature a measurement scale. |

## Number And Operations In Base Ten | |

3.NBT: Use Place Value Understanding And Properties Of Operations To Perform Multi-Digit Arithmetic.4 | |

3.NBT.2 | Fluently add and subtract within 1000 using strategies and algorithms based on place value, properties of operations, and/or the relationship between addition and subtraction. |

5.NBT: Perform Operations With Multi-Digit Whole Numbers And With Decimals To Hundredths. | |

5.NBT.7 | Add, subtract, multiply, and divide decimals to hundredths, using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning used. |

Understand The Place Value System. | |

5.NBT.1 | Recognize that in a multi-digit number, a digit in one place represents 10 times as much as it represents in the place to its right and 1/10 of what it represents in the place to its left. |

5.NBT.3 | Read, write, and compare decimals to thousandths. |

5.NBT.4 | Use place value understanding to round decimals to any place. |

4.NBT: Generalize Place Value Understanding For Multi-Digit Whole Numbers. | |

4.NBT.2 | Read and write multi-digit whole numbers using base-ten numerals, number names, and expanded form. Compare two multi-digit numbers based on meanings of the digits in each place, using >, =, and < symbols to record the results of comparisons. |

Use Place Value Understanding And Properties Of Operations To Perform Multi-Digit Arithmetic. | |

4.NBT.4 | Fluently add and subtract multi-digit whole numbers using the standard algorithm. |

3.NF: Develop Understanding Of Fractions As Numbers. | |

3.NF.3.b | Recognize and generate simple equivalent fractions, e.g., 1/2 = 2/4, 4/6 = 2/3). Explain why the fractions are equivalent, e.g., by using a visual fraction model. |

## Operations And Algebraic Thinking | |

3.OA: Solve Problems Involving The Four Operations, And Identify And Explain Patterns In Arithmetic. | |

3.OA.8 | Solve two-step word problems using the four operations. Represent these problems using equations with a letter standing for the unknown quantity. Assess the reasonableness of answers using mental computation and estimation strategies including rounding.3 |

4.OA: Use The Four Operations With Whole Numbers To Solve Problems. | |

4.OA.1 | Interpret a multiplication equation as a comparison, e.g., interpret 35 = 5 × 7 as a statement that 35 is 5 times as many as 7 and 7 times as many as 5. Represent verbal statements of multiplicative comparisons as multiplication equations. |

## Ratios And Proportional Relationships | |

6.RP: Understand Ratio Concepts And Use Ratio Reasoning To Solve Problems. | |

6.RP.1 | Understand the concept of a ratio and use ratio language to describe a ratio relationship between two quantities. For example, “The ratio of wings to beaks in the bird house at the zoo was 2:1, because for every 2 wings there was 1 beak.” “For every vote candidate A received, candidate C received nearly three votes.” |

6.RP.2 | Understand the concept of a unit rate a/b associated with a ratio a:b with b ≠ 0, and use rate language in the context of a ratio relationship. For example, “This recipe has a ratio of 3 cups of flour to 4 cups of sugar, so there is 3/4 cup of flour for each cup of sugar.” “We paid $75 for 15 hamburgers, which is a rate of $5 per hamburger.”1 |

6.RP.3.c | Find a percent of a quantity as a rate per 100 (e.g., 30% of a quantity means 30/100 times the quantity); solve problems involving finding the whole, given a part and the percent. |

7.RP: Analyze Proportional Relationships And Use Them To Solve Real-World And Mathematical Problems. | |

7.RP.2.c | Represent proportional relationships by equations. For example, if total cost t is proportional to the number n of items purchased at a constant price p, the relationship between the total cost and the number of items can be expressed as t = pn. |

7.RP.3 | Use proportional relationships to solve multistep ratio and percent problems. Examples: simple interest, tax, markups and markdowns, gratuities and commissions, fees, percent increase and decrease, percent error. |

#### See how teachers are using Gazillionaire!

#### Teacher Reviews

- For advanced learners in business concepts2April 19, 2013