# Numbers

*Not Yet Rated*

- equations
- graphing
- numbers
- statistics

- self-control

- digital creation
- using and applying technology

- analyzing evidence
- applying information
- collecting data

###### Pros

Sharing files and editing templates is relatively easy, and support is directly accessible from the app.###### Cons

The number of features can be overwhelming, so most kids will need a lot of time to explore and learn before creating spreadsheets.###### Bottom Line

Powerful, highly interactive tool teaches kids how to work with spreadsheets and display data.None

Creating spreadsheets with touchscreen features and beautiful graphics is a fun way to learn how to display data.

Students work with a free-form canvas and explore editing features. By visualizing various data displays, they learn through experience how best to organize and present data.

The coaching tips and help options are excellent resources. Audio options would help kids who struggle with reading a lot of text.

Numbers could be used as part of a math unit about statistics, probability, or data display. One idea is to use it as a project-based assignment. Have small groups work together to collect data over a period of several days, and then customize a spreadsheet to display the data. Kids can then give a class presentation about their work and explain why they chose to display their data a certain way.

Read More Read LessNumbers is a dynamic spreadsheet tool with a touchscreen interface and more than 30 easy-to-use templates. Students start by choosing a template from one of these categories: Basic, Personal Finance, Personal, Business, or Education. A blank spreadsheet allows them to essentially start from scratch, while other templates give them a specific starting point. For example, if students choose the Probability Lab template in the Education category, a data table, pie chart, and bar graph are already entered in the spreadsheet. Students can use tools to edit the data and change the formatting. By touching and dragging, they can reorder columns and rows and resize tables. Once the spreadsheets are finished, they can be saved and shared using iCloud, AirDrop, iMessage, email, or WebDAV.

The app uses a free-form canvas approach that treats numbers and formulas as one of many data types found on a worksheet. Other data, like text and pictures, are treated equally when presented as charts, graphics, and an overall collection of data. Apple-designed templates are visually appealing and interact easily with other iOS productivity apps.

Read More Read LessWhen Numbers' excellent built-in coaching feature is turned on, annotations appear on-screen to help users navigate the screen and use certain features. A more detailed drop-down menu gives specific instructions for completing such tasks as adding and editing tables, entering formulas, organizing spreadsheets, and much more. With more than 250 available functions, students can tap, touch, and drag items on the free-form canvas to create customized spreadsheets that include images, charts, tables, text, and even animated data. By creating and customizing spreadsheets, students learn data analysis and presentation skills. They also learn mobile publishing and Cloud-based file management skills that easily transfer to other types of productivity apps. Since iCloud is built into the app, kids can easily share and update their work.

Read More Read Less## Key Standards Supported

## Reading Science/Technical | |

RST.6-8: Key Ideas and Details | |

RST.6-8.3 | Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks. |

RST.9-10: Key Ideas and Details | |

RST.9-10.3 | Follow precisely a complex multistep procedure when carrying out experiments, taking measurements, or performing technical tasks, attending to special cases or exceptions defined in the text. |

RST.11-12: Key Ideas and Details | |

RST.11-12.3 | Follow precisely a complex multistep procedure when carrying out experiments, taking measurements, or performing technical tasks; analyze the specific results based on explanations in the text. |

## Functions | |

8.F: Define, Evaluate, And Compare Functions. | |

8.F.1 | Understand that a function is a rule that assigns to each input exactly one output. The graph of a function is the set of ordered pairs consisting of an input and the corresponding output.1 |

8.F.2 | Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a linear function represented by a table of values and a linear function represented by an algebraic expression, determine which function has the greater rate of change. |

8.F.3 | Interpret the equation y = mx + b as defining a linear function, whose graph is a straight line; give examples of functions that are not linear. For example, the function A = s2 giving the area of a square as a function of its side length is not linear because its graph contains the points (1,1), (2,4) and (3,9), which are not on a straight line. |

Use Functions To Model Relationships Between Quantities. | |

8.F.4 | Construct a function to model a linear relationship between two quantities. Determine the rate of change and initial value of the function from a description of a relationship or from two (x, y) values, including reading these from a table or from a graph. Interpret the rate of change and initial value of a linear function in terms of the situation it models, and in terms of its graph or a table of values. |

8.F.5 | Describe qualitatively the functional relationship between two quantities by analyzing a graph (e.g., where the function is increasing or decreasing, linear or nonlinear). Sketch a graph that exhibits the qualitative features of a function that has been described verbally. |

## Interpreting Categorical And Quantitative Data | |

HSS.ID: Summarize, Represent, And Interpret Data On A Single Count Or Measurement Variable | |

HSS.ID.1 | Represent data with plots on the real number line (dot plots, histograms, and box plots). |

HSS.ID.2 | Use statistics appropriate to the shape of the data distribution to compare center (median, mean) and spread (interquartile range, standard deviation) of two or more different data sets. |

HSS.ID.3 | Interpret differences in shape, center, and spread in the context of the data sets, accounting for possible effects of extreme data points (outliers). |

HSS.ID.4 | Use the mean and standard deviation of a data set to fit it to a normal distribution and to estimate population percentages. Recognize that there are data sets for which such a procedure is not appropriate. Use calculators, spreadsheets, and tables to estimate areas under the normal curve. |

Summarize, Represent, And Interpret Data On Two Categorical And Quantitative Variables | |

HSS.ID.5 | Summarize categorical data for two categories in two-way frequency tables. Interpret relative frequencies in the context of the data (including joint, marginal, and conditional relative frequencies). Recognize possible associations and trends in the data. |

HSS.ID.6 | Represent data on two quantitative variables on a scatter plot, and describe how the variables are related. |

HSS.ID.6.a | Fit a function to the data; use functions fitted to data to solve problems in the context of the data. Use given functions or choose a function suggested by the context. Emphasize linear, quadratic, and exponential models. |

HSS.ID.6.b | Informally assess the fit of a function by plotting and analyzing residuals. |

HSS.ID.6.c | Fit a linear function for a scatter plot that suggests a linear association. |

## Interpreting Functions | |

HSF.IF: Analyze Functions Using Different Representations | |

HSF.IF.7 | Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.★ |

HSF.IF.7.a | Graph linear and quadratic functions and show intercepts, maxima, and minima. |

HSF.IF.7.b | Graph square root, cube root, and piecewise-defined functions, including step functions and absolute value functions. |

HSF.IF.7.c | Graph polynomial functions, identifying zeros when suitable factorizations are available, and showing end behavior. |

HSF.IF.7.d | (+) Graph rational functions, identifying zeros and asymptotes when suitable factorizations are available, and showing end behavior. |

HSF.IF.7.e | Graph exponential and logarithmic functions, showing intercepts and end behavior, and trigonometric functions, showing period, midline, and amplitude. |

HSF.IF.8 | Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function. |

HSF.IF.8.a | Use the process of factoring and completing the square in a quadratic function to show zeros, extreme values, and symmetry of the graph, and interpret these in terms of a context. |

HSF.IF.8.b | Use the properties of exponents to interpret expressions for exponential functions. For example, identify percent rate of change in functions such as y = (1.02)t, y = (0.97)t, y = (1.01)12t, y = (1.2)t/10, and classify them as representing exponential growth or decay. |

HSF.IF.9 | Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a graph of one quadratic function and an algebraic expression for another, say which has the larger maximum. |

Interpret Functions That Arise In Applications In Terms Of The Context | |

HSF.IF.4 | For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity.★ |

HSF.IF.5 | Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. For example, if the function h(n) gives the number of person-hours it takes to assemble n engines in a factory, then the positive integers would be an appropriate domain for the function.★ |

HSF.IF.6 | Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.★ |

Understand The Concept Of A Function And Use Function Notation | |

HSF.IF.1 | Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If f is a function and x is an element of its domain, then f(x) denotes the output of f corresponding to the input x. The graph of f is the graph of the equation y = f(x). |

HSF.IF.2 | Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context. |

HSF.IF.3 | Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers. For example, the Fibonacci sequence is defined recursively by f(0) = f(1) = 1, f(n+1) = f(n) + f(n-1) for n ≥ 1. |

## Statistics And Probability | |

6.SP: Develop Understanding Of Statistical Variability. | |

6.SP.1 | Recognize a statistical question as one that anticipates variability in the data related to the question and accounts for it in the answers. For example, “How old am I?” is not a statistical question, but “How old are the students in my school?” is a statistical question because one anticipates variability in students’ ages. |

6.SP.2 | Understand that a set of data collected to answer a statistical question has a distribution which can be described by its center, spread, and overall shape. |

6.SP.3 | Recognize that a measure of center for a numerical data set summarizes all of its values with a single number, while a measure of variation describes how its values vary with a single number. |

Summarize And Describe Distributions. | |

6.SP.4 | Display numerical data in plots on a number line, including dot plots, histograms, and box plots. |

6.SP.5 | Summarize numerical data sets in relation to their context, such as by: |

6.SP.5.a | Reporting the number of observations. |

6.SP.5.b | Describing the nature of the attribute under investigation, including how it was measured and its units of measurement. |

6.SP.5.c | Giving quantitative measures of center (median and/or mean) and variability (interquartile range and/or mean absolute deviation), as well as describing any overall pattern and any striking deviations from the overall pattern with reference to the context in which the data were gathered. |

6.SP.5.d | Relating the choice of measures of center and variability to the shape of the data distribution and the context in which the data were gathered. |

7.SP: Draw Informal Comparative Inferences About Two Populations. | |

7.SP.3 | Informally assess the degree of visual overlap of two numerical data distributions with similar variabilities, measuring the difference between the centers by expressing it as a multiple of a measure of variability. For example, the mean height of players on the basketball team is 10 cm greater than the mean height of players on the soccer team, about twice the variability (mean absolute deviation) on either team; on a dot plot, the separation between the two distributions of heights is noticeable. |

7.SP.4 | Use measures of center and measures of variability for numerical data from random samples to draw informal comparative inferences about two populations. For example, decide whether the words in a chapter of a seventh-grade science book are generally longer than the words in a chapter of a fourth-grade science book. |

Investigate Chance Processes And Develop, Use, And Evaluate Probability Models. | |

7.SP.5 | Understand that the probability of a chance event is a number between 0 and 1 that expresses the likelihood of the event occurring. Larger numbers indicate greater likelihood. A probability near 0 indicates an unlikely event, a probability around 1/2 indicates an event that is neither unlikely nor likely, and a probability near 1 indicates a likely event. |

7.SP.6 | Approximate the probability of a chance event by collecting data on the chance process that produces it and observing its long-run relative frequency, and predict the approximate relative frequency given the probability. For example, when rolling a number cube 600 times, predict that a 3 or 6 would be rolled roughly 200 times, but probably not exactly 200 times. |

7.SP.7 | Develop a probability model and use it to find probabilities of events. Compare probabilities from a model to observed frequencies; if the agreement is not good, explain possible sources of the discrepancy. |

7.SP.7.a | Develop a uniform probability model by assigning equal probability to all outcomes, and use the model to determine probabilities of events. For example, if a student is selected at random from a class, find the probability that Jane will be selected and the probability that a girl will be selected. |

7.SP.7.b | Develop a probability model (which may not be uniform) by observing frequencies in data generated from a chance process. For example, find the approximate probability that a spinning penny will land heads up or that a tossed paper cup will land open-end down. Do the outcomes for the spinning penny appear to be equally likely based on the observed frequencies? |

7.SP.8 | Find probabilities of compound events using organized lists, tables, tree diagrams, and simulation. |

7.SP.8.a | Understand that, just as with simple events, the probability of a compound event is the fraction of outcomes in the sample space for which the compound event occurs. |

7.SP.8.b | Represent sample spaces for compound events using methods such as organized lists, tables and tree diagrams. For an event described in everyday language (e.g., “rolling double sixes”), identify the outcomes in the sample space which compose the event. |

7.SP.8.c | Design and use a simulation to generate frequencies for compound events. For example, use random digits as a simulation tool to approximate the answer to the question: If 40% of donors have type A blood, what is the probability that it will take at least 4 donors to find one with type A blood? |

Use Random Sampling To Draw Inferences About A Population. | |

7.SP.1 | Understand that statistics can be used to gain information about a population by examining a sample of the population; generalizations about a population from a sample are valid only if the sample is representative of that population. Understand that random sampling tends to produce representative samples and support valid inferences. |

7.SP.2 | Use data from a random sample to draw inferences about a population with an unknown characteristic of interest. Generate multiple samples (or simulated samples) of the same size to gauge the variation in estimates or predictions. For example, estimate the mean word length in a book by randomly sampling words from the book; predict the winner of a school election based on randomly sampled survey data. Gauge how far off the estimate or prediction might be. |

8.SP: Investigate Patterns Of Association In Bivariate Data. | |

8.SP.1 | Construct and interpret scatter plots for bivariate measurement data to investigate patterns of association between two quantities. Describe patterns such as clustering, outliers, positive or negative association, linear association, and nonlinear association. |

8.SP.2 | Know that straight lines are widely used to model relationships between two quantitative variables. For scatter plots that suggest a linear association, informally fit a straight line, and informally assess the model fit by judging the closeness of the data points to the line. |

8.SP.3 | Use the equation of a linear model to solve problems in the context of bivariate measurement data, interpreting the slope and intercept. For example, in a linear model for a biology experiment, interpret a slope of 1.5 cm/hr as meaning that an additional hour of sunlight each day is associated with an additional 1.5 cm in mature plant height. |

8.SP.4 | Understand that patterns of association can also be seen in bivariate categorical data by displaying frequencies and relative frequencies in a two-way table. Construct and interpret a two-way table summarizing data on two categorical variables collected from the same subjects. Use relative frequencies calculated for rows or columns to describe possible association between the two variables. For example, collect data from students in your class on whether or not they have a curfew on school nights and whether or not they have assigned chores at home. Is there evidence that those who have a curfew also tend to have chores? |